Knowledge-based configuration

Knowledge-based configuration (of complex products and services) has a long history as an artificial intelligence application area, see, e.g.,[1],[2],[3],[4],[5],[6],[7]. Informally, configuration can be defined as a "special case of design activity, where the artifact being configured is assembled from instances of a fixed set of well-defined component types which can be composed conforming to a set of constraints" [8]. Such constraints are representing technical restrictions, restrictions related to economic aspects and conditions related to production processes. The result of a configuration process is a product configuration (concrete configuration), i.e., a list of instances and in some cases also connections between these instances. Examples of such configurations are computers to be delivered or financial service portfolio offers (e.g., a combination of loan and corresponding risk insurance).

Configuration systems are one of the most successfully applied Artificial Intelligence technologies. Examples are the automotive industry [4], the telecommunication industry [2], the computer industry [1],[9] or power electric transformers [3]. Starting with rule-based approaches such as R1/XCON [1], model-based representations of knowledge (in contrast to rule-based representations) have been developed which strictly separate product domain knowledge from the problem solving one. There are two commonly sited conceptualizations of configuration knowledge [10],[11]. The most important concepts in these are components, ports, resources and functions. This separation of product domain knowledge and problem solving knowledge increased the effectiveness of configuration application development and maintenance [2],[4],[5],[12] since changes in the product domain knowledge do not effect search strategies and vice versa.

"Core configuration", i.e., guiding the user and checking the consistency of user requirements with the knowledge base, solution presentation and translation of configuration results into bill of materials (BOM) are major tasks to be supported by a configurator [13][14]. Configuration knowledge bases are often built using proprietary languages (see, e.g.,[5],[15],[16]). In most cases knowledge bases are developed by knowledge engineers who elicit product, marketing and sales knowledge from domain experts. Configuration knowledge bases are composed of a formal description of the structure of the product and further constraints restricting the possible component combinations.

Configurators are also often considered as "open innovation toolkits", i.e., tools which support customers in the product identification phase [13]. In this context customers are innovators who articulate their requirements leading to new innovative products [13],[17]. "Mass Confusion" [18] – the overwhelming of customers by a large number of possible solution alternatives (choices) – is a phenomenon which often comes with the application of configuration technologies. This phenomenon motivated the creation of personalized configuration environments taking into account a customer’s knowledge and preferences [16][19].

Recently, knowledge based configuration has been extended to service and software configuration. Modeling software configuration has been based on two main approaches: feature modeling [20],[21] and component-connectors [22]. Kumbang domain ontology combines the previous approaches building on the tradition of knowledge based configuration [23].

Contents

Workshops on configuration

  1. AAAI Fall Symposium 1996: http://www.aaai.org/Press/Reports/Symposia/Fall/fs-96-03.php
  2. AAAI 1999 Workshop on Configuration: http://cohave.ifit.uni-klu.ac.at/papers/ConfigurationWorkshop_1999.zip
  3. ECAI 2000 Workshop on Configuration: http://www.soberit.hut.fi/pdmg/ECAI2000WS/
  4. IJCAI 2001 Workshop on Configuration: http://www.soberit.hut.fi/pdmg/IJCAI2001ConfWS/
  5. ECAI 2002 Workshop on Configuration: http://www.enstimac.fr/recherche/gind/manifestations/ecai2002
  6. IJCAI 2003 Workshop on Configuration: http://www.isi.edu/integration/workshops/ijcai03/iiweb.html
  7. ECAI 2004 Workshop on Configuration: http://www.dsic.upv.es/ecai2004/workshops/cfps/cfp-w02.html
  8. IJCAI 2005 Workshop on Configuration: http://cohave.ifit.uni-klu.ac.at/papers/ConfigurationWorkshop_2005.pdf
  9. ECAI 2006 Workshop on Configuration: http://fmv.jku.at/ecai-config-ws-2006/
  10. AAAI 2007 Workshop on Configuration: http://www.cs.ucc.ie/~osullb/aaai-config-ws-2007/ Proceedings: http://www.aaai.org/Library/Workshops/ws07-03.php
  11. ECAI 2008 Workshop on Configuration: http://www.soberit.hut.fi/configws08/pages/agenda.htm
  12. IJCAI 2009 Workshop on Configuration: http://www.cis.unisa.edu.au/~confws09/
  13. ECAI 2010 Workshop on Configuration: http://www.hitec-hh.de/confws10
  14. FLoC 2010 Workshop on Logic in Component Configuration: http://lococo2010.mancoosi.org/
  15. ECAI 2010 Workshop on Intelligent Engineering Techniques for Knowledge Bases: http://ase.ist.tugraz.at/ecai_2010
  16. IJCAI 2011 Workshop on Configuration: http://ls13-www.cs.uni-dortmund.de/homepage/confws11/

Journal special issues on Configuration

  1. AIEDAM 1998 Special Issue on Configuration Design: http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=38637
  2. IEEE Intelligent Systems Special Issue on Configuration 1998 (vol. 13, No. 4): http://www.computer.org/portal/web/intelligent/home
  3. AIEDAM 2003 Special Issue on Configuration: http://web.cs.wpi.edu/~aiedam/SpecialIssues
  4. IEEE Intelligent Systems Special Issue on Configuration 2007: http://www.computer.org/portal/web/intelligent/home
  5. Special Issue on Configuration in the International Journal of Mass Customization 2006: http://www.inderscience.com/browse/index.php?journalID=119&year=2006&vol=1&issue=4
  6. International Journal of Mass Customization Special Issue on Configuration 'Advances in Configuration Systems' 2010 (vol 3, No: 4). http://www.inderscience.com/browse/index.php?journalID=119&year=2010&vol=3&issue=4
  7. AIEDAM 2011 Special Issue on Configuration (upcoming): http://web.cs.wpi.edu/~aiedam/SpecialIssues

Configurator vendors

  1. Oracle configurator: http://www.oracle.com/us/products/applications/ebusiness/scm/051314.html
  2. SAP configurator: http://www.sap.com/sme/howtobuy/businessallinone/configurator.epx
  3. Tacton configurator: http://www.tacton.com/en/
  4. ConfigIT configurator: http://www.configit.com/
  5. Encoway configurator: http://www.encoway.de/
  6. Siemens configurator: http://www.siemens.com

Research prototypes

  1. 1991 PLAKON / PROKON http://www.hitec-hh.de/ueberuns/home/aguenter/literatur/literatur.html
  2. 1999 Konwerk http://www.aaai.org/Papers/Workshops/1999/WS-99-05/WS99-05-024.pdf
  3. 2002 ConIPF tools: http://www.conipf.org
  4. 2003 WeCoTin [24] http://www.soberit.hut.fi/pdmg/papers/Tiihonen_1290ICED03FPB.pdf
  5. 2005 Kumbang tools: http://www.soberit.hut.fi/kumbangtools

Configurator databases

  1. http://www.configurator-database.com/

Benchmarks

  1. Configuration Benchmarks Library (CLib): http://www.itu.dk/research/cla/externals/clib/
  2. Benchmarks from automotive product configuration: http://www-sr.informatik.uni-tuebingen.de/~sinz/DC/

Further Links

  1. http://en.wikipedia.org/wiki/Configuration
  2. http://de.wikipedia.org/wiki/Produktkonfigurator
  3. http://www.mass-customization.de/
  4. http://www.open-innovation.de/
  5. Software product lines and variability management dates back to 1996: http://www.splc.net/history.html
  6. German language "configuration workshops" Planen und Konfigurieren started already in 1987: http://www-is.informatik.uni-oldenburg.de/~sauer/puk/puk.html

References

  1. ^ a b c V. Barker, D. O’Connor, J. Bachant, and E. Soloway, Expert systems for configuration at Digital: XCON and beyond, Communications of the ACM, vol. 32, no. 3, pp. 298–318, 1989.
  2. ^ a b c G. Fleischanderl, G. Friedrich, A. Haselboeck, H. Schreiner, and M. Stumptner, Configuring Large Systems Using Generative Constraint Satisfaction, IEEE Intelligent Systems, vol. 13, no. 4, pp. 59–68, 1998.
  3. ^ a b C. Forza and F. Salvador, Managing for variety in the order acquisition and fulfillment process: The contribution of product configuration systems, International Journal of Production Economics, no. 76, pp. 87–98, 2002.
  4. ^ a b c E. Juengst and M. Heinrich, Using Resource Balancing to Configure Modular Systems, IEEE Intelligent Systems, vol. 13, no. 4, pp. 50–58, 1998.
  5. ^ a b c D. Mailharro, A classification and constraint-based framework for configuration, Artificial Intelligence for Engineering, Design, Analysis and Manufacturing Journal, Special Issue: Configuration Design, vol. 12, no. 4, pp. 383–397, 1998.
  6. ^ S. Mittal and F. Frayman, Towards a Generic Model of Configuration Tasks, in 11th International Joint Conference on Artificial Intelligence, Detroit, MI, 1989, pp. 1395–1401.
  7. ^ M. Stumptner, An Overview of Knowledge-Based Configuration. AI Commun. 10(2): 111–125, 1997.
  8. ^ D. Sabin and R. Weigel, Product Configuration Frameworks – A Survey, IEEE Intelligent Systems, vol. 13, no. 4, pp. 42–49, 1998.
  9. ^ D. McGuiness and J. Wright, An Industrial Strength Description Logics-Based Configurator Platform, IEEE Intelligent Systems, vol. 13, no. 4, pp. 69–77, 1998.
  10. ^ T. Soininen, J. Tiihonen, T. Männistö, and R. Sulonen, Towards a General Ontology of Configuration. AI EDAM (Artificial Intelligence for Engineering Design, Analysis and Manufacturing), 12(4): 357–372, 1998
  11. ^ A. Felfernig, G. Friedrich, and D. Jannach, Conceptual modeling for configuration of mass-customizable products, Artificial Intelligence in Engineering 15(2): 165–176, 2001
  12. ^ S. Mittal and B. Falkenhainer, Dynamic Constraint Satisfaction Problems, in National Conference on Artificial Intelligence (AAAI 90), Boston, MA, 1990, pp. 25–32.
  13. ^ a b c N. Franke and F. Piller, Configuration Toolkits for Mass Customization: Setting a Research Agenda, Working Paper No. 33 of the Dept. of General and Industrial Management, Technische Universitaet Muenchen, no. ISSN 0942-5098, 2002.
  14. ^ A. Felfernig, Standardized Configuration Knowledge Representations as Technological Foundation for Mass Customization, IEEE Transactions on Engineering Management, 54(1), pp. 41–56, 2007.
  15. ^ A. Haag, Sales Configuration in Business Processes, IEEE Intelligent Systems, vol. 13, no. 4, pp. 78–85, 1998.
  16. ^ a b U. Junker, Preference programming for configuration, in IJCAI’01 Workshop on Configuration, Seattle, WA, 2001.
  17. ^ F. Piller and M. Tseng, The Customer Centric Enterprise, Advances in Mass Customization and Personalization. Springer Verlag, 2003, pp. 3–16.
  18. ^ C. Huffman and B. Kahn, Variety for Sale: Mass Customization or Mass Confusion, Journal of Retailing, no. 74, pp. 491–513, 1998.
  19. ^ L. Ardissono, A. Felfernig, G. Friedrich, D. Jannach, G. Petrone, R. Schaefer, and M. Zanker, A Framework for the development of personalized, distributed web-based configuration systems, AI Magazine, vol. 24, no. 3, pp. 93–108, 2003.
  20. ^ K.C. Kang, S.G. Cohen, J.A. Hess, W.E. Novak, and A.S. Peterson, Feature-oriented domain analysis (FODA) feasibility study, Technical Report CMU/SEI-90-TR-21 ESD-90-TR-222, Software Engineering Institute, Carnegie Mellon University, 1990
  21. ^ K. Czarnecki, U.W. Eisenecker, Generative Programming – Methods, Tools, and Applications, Addison Wesley, 2000
  22. ^ R. van Ommering, F. van der Linden, J. Kramer, and J. Magee, The Koala component model for consumer electronics software, IEEE Computer, 33(3): 72–85, 2000.
  23. ^ T. Asikainen, T. Männistö, and T. Soininen, Kumbang: A domain ontology for modelling variability in software product families, Advanced Engineering Informatics, 21(1): 23–40, 2007.
  24. ^ J. Tiihonen, T. Soininen, I. Niemelä, and R. Sulonen, A Practical Tool for Mass-Customising Configurable Products. In Proceedings of International Conference on Engineering Design (ICED 03), 2003.